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In the search for biosignatures on Mars, there is an abundance of data from 
orbiters and rovers to characterize global and regional habitability, but 
much less information is available at the scales and resolutions of microbial 
habitats and biosignatures. Understanding whether the distribution of 
terrestrial biosignatures is characterized by recognizable and predictable 
patterns could yield signposts to optimize search efforts for life on other 
terrestrial planets. We advance an adaptable framework that couples 
statistical ecology with deep learning to recognize and predict biosignature 
patterns at nested spatial scales in a polyextreme terrestrial environment. 
Drone flight imagery connected simulated HiRISE data to ground surveys, 
spectroscopy and biosignature mapping to reveal predictable distributions 
linked to environmental factors. Artificial intelligence–machine learning 
models successfully identified geologic features with high probabilities 
for containing biosignatures at spatial scales relevant to rover-based 
astrobiology exploration. Targeted approaches augmented by deep learning 
delivered 56.9–87.5% probabilities of biosignature detection versus <10% for 
random searches and reduced the physical search space by 85–97%. Libraries 
of biosignature distributions, detection probabilities, predictive models 
and search roadmaps for many terrestrial environments will standardize 
analogue science research, enabling agnostic comparisons at all scales.

In extreme environments, the distribution of biosignatures is tightly 
controlled by a complex interdependence of geological, physicochemi-
cal and biological interactions1–5. In such environments, microbial 
populations often occur in non-random spatial distributions closely 

tied to their physical settings, key morphologies (substrates, ‘habitats’) 
and/or requirements for life, especially water6–10. To date, few studies 
have systematically examined such linkages across integrated spatial 
scales (Fig. 1) or applied machine learning to test the predictive power 
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elevation at the margin of the hyperarid Atacama Desert and Chilean 
Altiplano (Fig. 1)20. Exceptionally high ultraviolet radiation21, hypersa-
linity and low temperatures distinguish Pajonales as an analogue for 
the evaporitic basins of Mars. Polyextreme conditions pose serious 
challenges for life but complex microbial populations can inhabit and 
have high potential to be preserved in salt crusts and sediments16,22–24. 
These properties make salt-encrusted basins and their microbiomes 
ideal terrestrial analogues to map extant or extinct biosignatures and 
promising future targets for missions to Mars16–18.

Pajonales exhibits features from both physical and biological 
processes highly relevant to biosignature search on Mars20. Fractal-like 
ridge networks, patterned ground and shrinkage crack terrains of 
abiotic and/or biotic origin (Extended Data Fig. 1) are morphologically 
similar to the polygonal terrain observed from orbit in salt-encrusted 
basins on Mars20,25. The Pajonales palaeolake basin contains hydrated 
Ca sulfate and chloride minerals and modern and fossilized stroma-
tolite and microbialite formations that serve as protective refugia 
for soil crust or endolithic assemblages26–29 (Extended Data Fig. 1). 
These sulfate–chloride habitats have high-to-very-high preserva-
tion potential and are cousins to the better studied ‘microbial struc-
tures, textures and microfossils preserved in carbonates, silica and  
clay-rich deposits’30,31.

At Pajonales, we studied a 2.78 km2 landscape of surficial polyg-
onal networks and domical structures (‘Dome Field’) composed of 
near-uniform mineralogy (gypsum, CaSO4·2H2O)20,22. Landscape mor-
phology was classified and quantified by UAV and with five in situ 
nested random ecological studies (Methods, Extended Data Fig. 2, 
Extended Data Tables 1 and 2 and Supplementary Fig. 1). The pres-
ence/absence of biosignatures was characterized with standard visual 
assessments (7,765 images, n = 1,154 random samples) of two distinct 
biological morphotypes comprising photosynthetic microorganisms: 
(1) endolithic colonization, that is, layered communities within salt 
structures23, and (2) biological soil crusts2,32 (BSCs), that is occupying 
surficial habitats (Extended Data Fig. 1). Raman and visible short-wave 
infrared (VSWIR) spectroscopy, multiplex microarray immunoas-
says and 16S ribosomal RNA gene sequencing of pigmented samples 
revealed distinctive markers for life. Markers included carotenoid 
biosignatures expressed as orange–pink layers produced by halophilic, 
radiation-resistant and desiccation-resistant bacteria and archaea; 
and chlorophyll biosignatures, as green layers produced by cyanobac-
teria (Extended Data Fig. 1). In all samples, absorption features in the 
reflectance spectra corresponded to biosignatures in the green and 
orange–pink endolithic bands.

Biotic abundance was quantified as the probability of coloniza-
tion, defined as percentage colonization (%Col = number of samples 
with biosignatures of photosynthetic communities ÷ total number 
of samples × 100, Methods). Assessments were validated by VSWIR 
and Raman spectroscopy, microscopy, mass spectroscopy, genomics 
and proteomics (Methods, Extended Data and Supplementary Fig. 2). 
Mineralogy and geochemistry were assessed in the field using VSWIR 
and in the laboratory using X-ray diffraction (XRD) and micro X-ray 
fluorescence spectroscopy (Methods).

Biosignatures cluster by spatial scale and  
macro- and microhabitat
The spatial distribution of microbial biosignatures at Pajonales varied 
significantly. Specifically, 9.2% of the location was colonized, with com-
munities clustered in isolated, non-random patchy spatial patterns  
(Fig. 2, Extended Data Table 2 and Supplementary Data Fig. 3).

UAV and ground survey data classified geomorphological features 
into four macrohabitats (metre to kilometre scales) and six microhabi-
tats (centimetre scale), each with distinct biosignature probabilities 
(Table 1 and Fig. 3). Every dome supported at least one endolithic 
biosignature, with a mean probability across all dome samples of 40.8%  
(Table 1 and Extended Data Table 2). Ridges and aeolian cover had 

and probabilities of detecting life at the extremes of habitability11–13. In 
this Article, we present a proof-of-concept study that quantifies such 
probabilities and constructs predictive models for geologic feature 
recognition and biosignature detection.

Our process combines statistical microbial landscape ecology14,15 
with remote sensing from unmanned aerial vehicles (UAVs/drones) and 
machine learning to map and explain (Figs. 2 and 3), model and predict 
(Figs. 4 and 5) the distributions of biosignatures in a Mars-relevant 
evaporitic palaeolake setting. Our approach captures microbial spa-
tial distributions and their controls across a continuum of scales and 
demonstrates that, even amidst near-uniform mineralogy, biosignature 
patterns are discernible, non-random and predictable. We improve the 
probability of detecting biosignatures13 from <10% (for random search) 
to up to 87.5% by augmenting macro- and microhabitat targeting with 
deep learning. Simultaneously, we shrink the search space by up to 
97%. Ultimately, our goal is to provide a broadly applicable and adapt-
able methodological framework to standardize terrestrial analogue 
research. With this approach, the astrobiology community can build 
a database, akin to spectral libraries, of biosignature distributions, 
detection probabilities and predictive models to guide and inform 
planetary exploration16–19.

Habitat and water control biosignature 
distributions
We quantified the distribution of photosynthetic communities in Salar 
de Pajonales (Pajonales), a 104 km2 ancient lakebed located at 3,500 m 
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Fig. 1 | Orbit-to-ground scales of investigation. a, Orbital view of Salar de 
Pajonales, Chile. The study area (8,193 m2), composed of a field of gypsum 
domes, is shown in red. b, UAV view of the Dome Field in the southern portion 
of the Pajonales location, the focus of this study, with macrohabitats shown in 
false colour: red, domes; pink, ridges/polygonal networks; blue, aeolian cover; 
green, patterned ground. The black box delineates the dome complex for the 
fine-scale study. c, Detail of the fine-scale study area with the three-dimensional 
representation of dome macrohabitats obtained from drone imaging, comparable 
to a rover ‘Mastcam’ scale. d,e, Coloured bands (biosignatures) of endolithic 
photosynthetic communities colonizing a gypsum type II crystal microhabitat in 
the domes (d) and Raman spectra of the distinct biosignature layers from d (e), 
comparable to ‘SuperCam’ Raman spectra on the Mars 2020 rover Perseverance.
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significantly lower colonization. Patterned ground covered 40.3% of the 
study area’s salar surface, with 50% colonized by BSC (Table 1 and Fig. 3).

Variation in %Col between microhabitats (that is, substrate materi-
als) was more variable than that between macrohabitats (Table 1 and 
Extended Data Table 2). Alabaster (Table 1) microhabitats were almost 
universally inhabited and were the most reliable predictor of biosigna-
tures (Fig. 3, Table 1, Extended Data Fig. 3, Extended Data Table 2 and 
Supplementary Tables 1 and 2). Float and sand were rarely colonized, 
except when sand was near alabaster (Supplementary Table 2 and  
Supplementary Fig. 4). Crystal colonization was macrohabitat depend-
ent and ranged from <5% in aeolian cover to 33% in domes. Fine-scale 
mapping (Extended Data Fig. 2) identified two types of crystal (type I or 
type II). Type II crystals are distinguishable by a powdery alabaster layer 
topping the crystal, and this textural difference was significantly cor-
related with higher biosignature probabilities (Supplementary Data, 
fine-scale statistical analyses). Alabaster was thus strongly associated 
with the presence of biosignatures regardless of macrohabitat. Pat-
terned ground colonization was binary: all microstructures supported 
photosynthetic communities, whereas all bare salar surface samples 
contained no biosignatures (Fig. 3 and Table 1).

Water controls habitability, spatial patterns at all 
scales
We hypothesized that macro- and microhabitats are proxies for water 
availability at Pajonales and that the underlying spatial heterogeneity 
of water content acts as the primary driver for non-random habitat (for 
example, alabaster) and biosignature distributions. To confirm this 
hypothesis, we completed in situ microclimate monitoring and wetting 
experiments (Extended Data Table 3). These data showed that alabaster, 
type II crystals and microstructures capture and/or retain liquid water 
up to twice as long as other microhabitats. Type II crystals are often 
located near open cracks in domes, where efflorescence and infiltration 
are greatest33. Our data revealed a significantly higher probability of 
endolithic biosignatures in these microhabitats (Supplementary Data, 
fine-scale statistical analyses). Likewise, alabaster typically encom-
passes the bases of ridges and domes, where humidity is high. Alabaster  
and type II crystals contain a well connected three-dimensional  
network of small pores (average size <6 μm; Extended Data Fig. 4)  
that are absent from other microhabitats. The porous network trans-
ports brines upwards (that is, efflorescence), explaining the higher 
water availability and presence of biosignatures.
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Fig. 2 | Biosignatures exhibit significant spatial heterogeneity and occur 
in non-random clustered distributions at hierarchical scales. a, Top: 
aerial view of Dome Field macrohabitats in UAV false colour: domes, ridges/
polygonal networks, aeolian cover and patterned ground. Black squares show 
eight randomly selected survey areas (5 m × 5 m); black dots show individual 
sample sites (Methods, Extended Data Fig. 2, Extended Data Tables 1 and 2 
and Supplementary Figs. 1 and 3). Bottom: spatial survey results (for example, 
areas, quadrants, Extended Data Table 2) for probability of colonization (as 
presence/absence of biosignatures, that is, percent colonization, %Col, circles) 
for pigmented endolithic and BSC communities. DEM, digital elevation model. 
b, Top: visible image of dome, ridge and aeolian cover macrohabitats at ground 

scale. Bottom: example of spatial survey results for study area 35 of quadrant 
6; each %Col circle is a ‘site’ mean of three random 10 cm2 ‘microsite’ spatial 
replicates (ecological study 1 (ES-1), Extended Data Fig. 2). The black arrow 
indicates the same perspective as in b, top. c, Top: close-up image of dome visible 
in b, the site of the fine-scale ES-3 study (n = 800 samples; white and black boxes 
are 1 m2 quadrats; Extended Data Fig. 2). Bottom left: close-up visible image of 
microhabitats. Bottom right: biosignature and microhabitat mapping results, 
in the same visible image, with %Col for each microhabitat. Note the microbial 
hotspots (green circles) near the microscale habitat transition zone outlined by 
the white dashed line. Black tiles, ground-truthed HySpex Mjolnir spectral scans.
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Other environmental factors, such as light and nutrient content, 
were not predominant controls on microbial distributions at Pajonales 
based on microclimate data, fine-scale studies or laboratory analyses 
(Supplementary Data, water availability and controls). Nonetheless, it 
is important to reiterate that these factors shape endolithic and BSC 
spatial distributions, with their effects well documented for many 
hypersaline and desert environments1,2,4,23,34–39.

Predictability: habitability and biosignature 
probability maps
To predict biosignature distributions in Pajonales we first compiled 
field-based data to extract scalable rules, statistical probabilities and 
quantitative correlations (Fig. 4). These data were used to train con-
volutional neural networks (CNNs)40 and spatial generalized additive 
models (GAMs) to predict macro- and microhabitat types, that is, 
biosignature-bearing geologic materials (Fig. 5).

CNN model (Fig. 5b,c ‘prediction’) and GAM (Fig. 5d) results 
aligned well with ground-truth data (Fig. 4; ‘true’ in Fig. 5b,c). At the 
aerial scale (Extended Data Table 1), the influences of physical and 
hydrological processes were evident amongst macrohabitats, each 
with distinct biosignature detection probabilities (Figs. 4 and 5a, 
Table 1 and Extended Data Tables 2 and 4). At UAV and HiRISE spa-
tial resolutions (Fig. 5a), a fully connected CNN model classified, 
on a per-pixel basis, the four main types of macrohabitat across 
Pajonales. Identification confidence values ranged between 78.8% 
and 95.1% (UAV, aerial scale) and between 54.8% and 87.0% (HiRISE,  
orbital scale).

At ground to fine (metre to centimetre) scales, CNN and GAM 
results reflected ecological statistical results (Figs. 4 and 5) and con-
firmed that microhabitat type is a credible and diagnostic predictor 
for the presence of biosignatures. GAMs identified alabaster as the 
most effective (positive) predictor for biosignatures regardless of 

macrohabitat (Figs. 4f and 5d). These models also flagged float and sand 
as having the weakest associations (negative predictors, Supplemen-
tary Tables 3 and 4). CNN models were trained on images of geological 
materials (for example, alabaster, type II crystal) within dome and 
aeolian cover macrohabitats and performed well on validation and test 
datasets (that is, images withheld during network training, Fig. 5b,c 
and Supplementary Figs. 5–8). For instance, alabaster was predicted 
with a median accuracy of 76% and a range of 65–90% across 10 runs 
with random train/validation/test partitions (or ‘splits’; see Methods 
for accuracy definition and details of model runs, Supplementary 
Fig. 6). Thus, CNN models demonstrated predictive capability for the 
presence of geological materials with high probability for containing 
biosignatures.

Together, the empirical conditional probabilities and spatial 
biosignature distributions quantified above are representative of 
Pajonales as a whole. However, as with any statistical model, further 
honing of the CNN model and GAM to capture other effects will require 
more training data. Future work on terrestrial-trained CNN models 
will expand capabilities to include the physical scale of the features of 
interest and further instrumentation. In addition to CNNs, generative 
models (for example, cellular automaton simulations) could explore 
interactions between life and its physical environment.

Future directions in the search for biosignatures 
on Mars
The framework and models presented here demonstrate how quantita-
tive systems ecology melded with deep learning feature recognition 
and prospecting can be a powerful tool to expedite the search and 
detection of biosignatures in terrestrial analogues. For the Pajon-
ales test site, the pairing of empirical biosignature probabilities with 
artificial intelligence–machine learning models enhanced success 
through identification and prediction of macro- and microscopic 

Table 1 | Macro- and microhabitats exhibit significantly different probabilities for containing endolithic or BSC biosignatures

Surface geomorphological features Probability of 
biosignatures

Habitat type Dimensions Description (%Col)b

Macrohabitatsa

Domes 1–7.5 m, 
≤20-cm-thick crust

Subcircular, convex-upward, hollow; tumuli33; topographic highs (~0.1–2.0 m); 8.7% of 
total surface area of study location (8,193 m2)

40.8

Ridges (or polygon ridges) 1–100s of m long Continuous topographic gypsum features (height 0.1–1.87 m); ridges are the exteriors of 
large-scale polygonal networks (diameter: 5–15 m); 28.2% of total surface area; ‘polygon 
ridges’ or ‘pressure ridges’33

18.4

Aeolian (surface) cover Salar wide Gypsum regolith comprising intermixed gypsum grains (silt to sand sized) and 
wind-blown volcanic grains; 48.5% of total surface area of study location; quasiflat 
aeolian surface cover comprises the interior of large-scale polygonal networks

10.2

Patterned ground Salar wide Bare gypsum quasiflat surface covered by microstructures (height 1–3 cm); fractal-like 
patterned ground (Fig. 3a, green) among other habitat types (Fig. 3a, blue, pink, red); 
14.5% of total surface area

50

Microhabitats (≤10 cm2)c

Alabaster <200 µm Powdery, finely crystalline gypsum with abundant intercrystalline pores within domes, 
ridges and aeolian cover

87.5

Crystals <18 cm Large gypsum crystals (selenite) with abundant intercrystalline pores within domes, 
ridges and aeolian cover

15.7

Float <10 cm Mixture of loose sand and eroded crystals, typically lying horizontally on the surface 0

Sand <2 mm Gypsum grains (locally mixed with quartz, feldspar, haematite, magnetite grains) 0d

Bare salar surface Not applicable Flat-lying surface with gypsum crystals (001) oriented perpendicular to the surface; 
interiors of micropolygons

0

Microstructures <2 cm Narrow, sinuous networks of cemented, finely crystalline gypsum with positive relief; 
rims of micropolygons

100

aDetected in drone and simulated satellite imagery and characterized with VSWIR and Raman spectroscopy. bProbability of biosignatures, as %Col (for χ2 tests and detailed statistics, see 
Extended Data Table 2 and Supplementary Tables 1–3). cDetected in situ in ground surveys and analysed via VSWIR and Raman spectroscopy in the field and laboratory. dSand %Col ranged 
from 0 to 7% (Extended Data Table 2).
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biosignature-bearing targets. Whereas a random search yielded a 
9.2% probability of detecting biosignatures, the targeted search of 
macro- and microscale geologic features and materials, guided by 
machine learning models, delivered up to an ~87.5% chance of locating 
biosignatures in the first sample while reducing the initial search space 
by 85–97%. In light of these advances, our new approach represents a 
path forward for terrestrial analogue research to produce scientific 

results that are objective, comparable and replicable, as well as novel 
in codifying expert experience.

Terrestrial analogues are foundational to successful exploration 
on Mars16–19,30,31,41–45. Our study provides a clear and defined general 
path (at different scales) for astrobiological exploration, focused on 
Mars and tested and applied at a specific analogue site. The sulfate–
chloride palaeolake system at Pajonales has arisen from evaporation 
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Fig. 3 | Macro- and microhabitat composition and biosignature detection 
probabilities. Columns are by habitat and rows by indicator. For example, 
90% of aeolian cover macrohabitat samples were uncolonized, while 10% had 
photosynthetic community biosignatures. In the aeolian cover macrohabitat, 
59% of samples were float (0% of float samples were colonized, that is, no samples 

contained biosignatures), 10% were alabaster (92%Col) and 31% were crystals 
(8%Col). By microhabitat, 0% of all float samples had biosignatures. Probabilities, 
standard errors and methods are further detailed in Methods, Extended Data and 
Supplementary Information.
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over millennia in a climate that may be one of the best available Earth 
analogues to the Noachian–Hesperian transition on Mars20. The 
macro- and microscopic structures and biotic systems modelled in this 

study represent an important addition to the catalogue of terrestrial 
Mars analogues in the literature1,4,16,30,31,38 (Extended Data Fig. 1) with  
quantitative probabilities for biosignatures.
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Our study generated predictive models (Fig. 5) and exploration 
roadmaps (Fig. 4; example roadmap, Supplementary Data) for extant 
biosignatures within a polyextreme environment. Artificial intel-
ligence–machine learning models successfully learned to identify 
macro- and microgeological features with the highest probability of 
containing biosignatures. This proof-of-concept deep learning-based 
feature recognition46 for predictive biosignature exploration in a spe-
cific analogue relevant to Mars exploration was selected to highlight 
and test the fundamentals of this method within logistical and budget-
ary constraints. However, the method is not limited to this analogue and 
we encourage the astrobiology community to consider our approach 
for standardizing research across terrestrial analogue sites, features, 
instrument suites and (bio)signatures. Spectral analyses on Mars rely 
on libraries of reference spectra first compiled in controlled settings 
on Earth47; similarly, the interpretation of Martian environments could 
be advanced through a library of quantitative reference information 
on biosignature distribution and ecological data from a multitude 
of Earth-based analogues compiled with a coherent methodological 
framework. Such a library could assist future Mars mission scientists 
in the selection of facies, mineral assemblages and structures with 
the highest chance of containing biosignatures. Ultimately, we hope 
the approach will facilitate compilation of a databank of biosignature 
probability13 and habitability algorithms, roadmaps and models and 
serve as a guide for exploration on Mars. The framework may also have 
applications to other astrobiology targets, such as the surface of Titan, 
the plumes of Enceladus or the ice cover of Europa48.

Methods
Study location
The ~3 km2 field study location (25.14149° S, 68.77215° W) is situ-
ated in the eastern–central portion of the 104 km2 Salar de Pajonales  
(Pajonales) basin, a 4.09-Myr-old lakebed with active lagoons and fossil 
salar structures (Fig. 1)49,50. There, low precipitation (80–150 mm yr−1) 
and high evaporation potential (1,350 mm yr−1) are typical of the arid 
conditions of the Atacama Desert and Altiplano, and have strengthened 
since the Miocene51. Average air temperature is 5 °C, with values as low 
as −20 °C recorded. Seasonal precipitation largely occurs via austral 
summer rains from the east (Altiplanic winter), and southerly winter 
storms and occasional snow. Despite significant annual precipita-
tion, high winds, low humidity and strong insolation combine to keep  
Pajonales mostly ice free, with water availability remaining low in much 
of its surface environment. The water table is shallow in portions of the 
salar, where at least 14 perennial lagoons exist. The bedrock underlying 
and adjacent to the salar is associated with Cenozoic volcanism, still 
active today, including nearby thermal springs. Volcanic rocks are 
mainly of intermediate to felsic composition (andesites and rhyolites). 
Carbonates (calcite), borates (ulexites), chlorides (halite), quartz and 
minor feldspars and other minerals, locally abundant and associated 
with gypsum, compose the main mineral assemblage49,50.

Physical environment and habitats
UAV mapping of habitats/geomorphology/digital elevation model. 
Our study defines a habitat as the physical environment in which a par-
ticular organism or community of organisms may live. Macrohabitats 
were classified first on the basis of field observations and UAV images 
and subsequently refined and ground-truthed with field assessments. 
Initial UAV imagery and ground-based assessments revealed several 
surficial geomorphologic features with potential habitability, that is, 
ecological macrohabitat types. These macrohabitat (Table 1) features 
included (1) ridge networks20,33 (~1–100 m length), (2) domes (≤1–7.5 m 
diameter; tumuli)20,22,33, (3) fractal-like patterned ground (square cen-
timetres to hundreds of square metres in area), comprised of bare 
gypsum salar surface (‘salt pan’) covered by microstructures (1–3 cm 
height)20,52 and (4) aeolian surface cover (‘gypsum regolith’)20,33 between 
and around these features (square centimetres to hundreds of square 
metres in area). These four distinct geomorphic units were mapped in 
Esri ArcGIS software using an orthophotomosaic and digital elevation 
model, both derived from UAV images with the software package Pix4D. 
Ridges were identified as elongate, continuous, positive topographic 
features with length:width ratio (L:W) values of >2:1. Domes were identi-
fied as circular to subcircular, isolated, positive topographic features 
with L:W values of <2:1. Patterned ground was distinguished from other 
flat surfaces on the basis of its tan colour and distinct polygonal pat-
tern. All other flat surfaces comprised aeolian cover, identified from its 
sandy texture, beige–grey colouration and occasional dark and light 
rippling on the leeward sides of ridges and domes. A fully convolutional 
neural network (DeepLab v3+ model22 with a ResNet50 backbone46) was 
trained to classify, on a per-pixel basis (that is, semantic segmentation), 
the terrain in the orthophotomosaic of the field site and surrounding 
area at UAV and HiRISE ground sampling distances (6.9 and 23.9 cm 
per pixel respectively). Training images were labelled by a human ana-
lyst with on-the-ground experience at the field site using the criteria 
delineated above for ridges, domes, patterned ground and aeolian 
cover. Additional categories were added as necessary to incorporate 
terrain not found within the confines of the study site. Network train-
ing was carried out until the loss rate stabilized, typically <40 epochs 
(one epoch = one complete pass of training data through the network), 
with final test accuracies (identification confidence) presented in  
Fig. 5a for each class. See also CNN methods below for details of train-
ing, validation and testing datasets.

Microhabitat (Fig. 3, Table 1 and Extended Data Fig. 1) catego-
ries were identified and refined during nested spatial scale studies 
(described below) by visual assessments of texture, coherence and 
colour in the field and spectral imagery acquired on the ground. We 
collected hyperspectral panoramic images of the dome habitat using 
a HySpex Mjolnir hyperspectral camera mounted on a scanning tripod 
and placed approximately 30 m from the dome target. From each scan 
the pushbroom-style dual camera collects spectral data across the 
visible–near-infrared (VNIR) to short-wave infrared (SWIR) spectral 

Fig. 4 | Nested spatial scale biosignature probability and habitat maps. 
a, Aerial-scale biosignature probability map by macrohabitat (Table 1 and 
Extended Data Table 2). b, Rover ground view (Mastcam) of macrohabitat 
biosignature probability map. c, Rover ground view (SuperCam) showing HySpex 
Mjolnir-acquired spectral map generated with the first three eigenimages of 
the minimum noise fraction transform of the hyperspectral image cube in the 
R, G, B channels (Methods). In general: pink/white, dome type I and II crystals; 
green, alabaster. d, HySpex Mjolnir VSWIR spectra of dome type I and II crystals 
and alabaster. Laboratory spectra of gypsum (three grain sizes), bassanite 
CaSO4·0.5H2O (USGS spectral library) and <125 μm haematite (Fe2O3)121 are 
plotted for reference, with notable mineral absorption features indicated with 
vertical lines. e, Rover arm scale microhabitat map, based on ecological survey 
data (red, alabaster; yellow, float; blue–grey, type I crystals; purple, type II 
crystals). f, Contour map of endolithic biosignatures (probability, 0–100%Col) 
overlain on microhabitat map of the dome shown in e. g, Image of biosignatures 

in a type II crystal from the dome (comparable to Remote Micro Imager) showing 
brown/tan surface crust (top crust), pink and green endolithic biosignature 
layers and a bottom white gypsum layer. h, Raman spectra (comparable to 
the Raman Laser Spectrometer on ExoMars) for type II crystals with a strong 
gypsum ν1 peak at 1,013 cm−1 and weak peaks at 499 cm−1 for ν2 and 1,143 cm−1 for 
ν3 (ref. 122), including colonized pink and green layers with Raman peaks at 1,162 
and 1,523 cm−1 indicative of carotenoids123. i, Analytical Spectral Devices (ASD) 
VSWIR spectra (comparable to Mars 2020 SuperCam VISIR spectra) of type II 
crystals, indicating gypsum mineralogy. Note absorption features characteristic 
of chlorophyll near 0.625 and 0.675 μm (dashed vertical lines) in the green 
spectrum and of chlorophyll near 0.675 μm and carotenoids near 0.5 μm (dash–
dot vertical line) in the pink spectrum. These ASD data suggest that the detector 
is at least as sensitive as the laboratory cell counts reported for the coloured band 
layers (Supplementary Fig. 2).
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range of 400–3,500 nm at a bandwidth sampling interval of 3.0 or 
5.1 nm as it scans horizontally across the scene at a constant pan rate. 
We collected three scans under clear skies in mid-afternoon lighting 

conditions, while calibrating the frame period and integration time of 
the HySpex camera to the lighting conditions to maximize reflectance 
and eliminate saturated pixels. We then collected a final complete 
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panoramic scan using the calibrated parameters. The final scan pro-
duced a hyperspectral image cube with a spatial resolution of ~0.5 cm 
per pixel in the VNIR spectral region and ~1.0 cm per pixel in the SWIR 
spectral region. The spectral image covers a panoramic view of the 
primary dome target, three smaller domes next to it and foreground 
primarily composed of aeolian cover.

Raw data values in the hyperspectral image cubes acquired from 
the tripod were calibrated to reflectance values using in-scene Spec-
tralon calibration targets. Each scene consists of two spatially over-
lapping cubes, one in the VNIR wavelength range and the other in the 
SWIR. Because the optical apertures for the two subsystems that collect 
these cubes are slightly offset, the pixels in the two component cubes 
are not perfectly registered in the along-scan (horizontal) direction. 
Thus, extraction of reflectance spectra of the alabaster and type I and 
type II crystal units (Fig. 4d) was accomplished by manually selecting 
the corresponding pixels from the two component cubes by referenc-
ing features observed in both. The overwhelming majority of spectra 
examined contain the signature of gypsum (Fig. 4d), and only subtle 
spectral differences between different surfaces on and around the 
domes were noted. Weak shoulders and slight shifts in band position 
were found for the type I and type II crystal material that are consistent 
with the presence of bassanite53. These are highlighted by green arrows 
(Fig. 4d). A weak shoulder near 0.6 μm, a reflectance maximum near 
0.76 μm and a weak minimum near 0.88 μm are attributed to haematite. 
These features are indicated by purple arrows and are enhanced in the 
alabaster-type material. To highlight this subtle spectral variability and 
reveal any spatial patterns present in that variability, we processed the 
VNIR and SWIR cubes separately using the minimum noise fraction 
transform principal component analysis algorithm54. The false-colour 
image shown in Fig. 4c was created by loading the first three bands 
representing most significant spectral variance from the SWIR cube 
processed using minimum noise fraction for that scene into the red, 
green and blue channels of the image. The colour variations in this 
representation correspond to slight differences in the general gypsum 
spectrum and are seen to be spatially segregated. While we have not 
undertaken a separate study to explain the causes of these spectral 
variations, they are probably due to differences in grain sizes, degree 
of compaction and perhaps the presence or absence of different minor 
(non-gypsum) components.

Environmental controls: climate monitoring and wetting experi-
ments. Environmental data for the study location and within domes 
and microstructures were acquired in situ from October 2018 to 
November 2019 with a HOBO microstation (H21-001) and Onset 
Computers logger array. One weather station was connected to the 
following smart sensors to monitor macroclimate parameters: (1) 
rainfall (1 mm resolution, HOBO RG3-M rain gauge metric data logger); 

(2) photosynthetically active radiation (S-LIA-M003), to quantify 
solar flux in the biologically relevant portion of the spectrum (400–
700 nm; range 0–2,700 μmol m−2 s−1); (3) wind speed and direction 
(S-WCF-M003; ±1.1 m s−1, ±7°); (4) air temperature (T, °C) and relative 
humidity (%RH) at 1 m above dome surfaces (~3 m above salar surface; 
HOBO S-THB-M002; precision ±0.2 °C, ±2.5%RH; shaded by a solar 
radiation shield, RS3-B).

Microclimate data were acquired through arrays of both 
stand-alone external T/RH HOBO U23 ProV2 loggers (U23-002; preci-
sion ±0.21 °C, ±5%RH) and microstations (H21-001). To measure the 
presence of liquid water on surfaces and in rock interiors (endolithic 
microenvironments) from fog/dew/rainfall/snow, microstations were 
connected to (1) T/RH smart sensors (S-THB-M008), (2) leaf wetness 
sensors (S-LWA-M003; precision ±5%RH: reading of 0%RH is dry, 
100%RH reflects a sensor grid completely covered by a thin layer of 
water) and (3) EC5 conductivity probes (S-SMC-M005; baseline >0: 
liquid water and/or 0.25 m3 per m3 soil saturated) placed on both the 
surfaces and interiors of domes ~0.5–1 cm below the surface where 
endolithic microbial communities layers occurred. They were also 
placed on salar surfaces and microstructures in all four cardinal direc-
tions ~0.5–1 cm below the surface where BSC layers occurred. On the 
basis of previous studies55–58 and successful long-term use of RH and 
conductivity sensors for direct field measurement of water activity— 
the parameters controlling microbiological activity in hyperarid 
deserts55,56—a cutoff for liquid water was assumed at RH ≥ 95%. Although 
lichen communities can undergo photosynthesis at 70%RH, the 95%RH 
threshold reflects a mid-value for the predominantly cyanobacterial 
endolithic communities in the Dome Field location, which require 
liquid water to initiate photosynthesis (range 90–100%)59–64. For logger 
probes inserted into gypsum domes and microstructures, an electric 
drill was used to create small (~1 cm) boreholes in which T/RH sensors 
(S-THB-M008) were inserted and sealed with silicon epoxy. All sensors 
logged at 30 min intervals.

This environmental array allowed us to measure naturally avail-
able moisture sources to microbial communities, including surface 
precipitation (photosynthetically active radiation–cloud/storm cover; 
rainfall/snow–rain gauge, leaf wetness) and concomitant available 
moisture of interiors of domes, microstructures and bare salar surfaces 
(T/RH, electrical conductivity). In situ rain gauge data were corrobo-
rated with nearby station precipitation data, when available, and his-
torical climate data were obtained from reference literature, regional 
observatories and the Chilean Meteorological Bureau. To ascertain the 
relative role of microstructures versus bare salar surfaces in capturing 
and retaining water during rainfall events, a simulated rainfall wetting 
experiment was completed within each of three (10 mm, 1 mm and con-
trol) 1 m2 quadrats. The following sensors (see above for specifications) 
were emplaced: (1) a leaf wetness sensor; (2) four HOBO T/RH probes 

Fig. 5 | Habitat and biosignature probability maps from CNN models and 
spatial GAMs. a, Top: pixel-wise classification of images with ground sampling 
distances of 6.9 cm per pixel (aerial) and 23.9 cm per pixel (orbital), generated 
by a fully connected CNN (details in Methods). Bottom: colours corresponding 
to macrohabitats in classification scenes (top), and probability of biosignatures, 
CNN identification confidence values and biosignature detection expected 
values (identification confidence × %Col). b, Dome macrohabitat fine-scale (cm) 
CNN results for classification at the grid-cell image level. Top row: ‘true’ shows 
ES-3 ground-truth data. Middle row: CNN ‘predictions’ for presence of endolithic 
biosignatures and microhabitat type. Note that predictive heatmaps represent 
CNN predictive capability over the macrohabitat images (split into training/
validation/test sets) and belong to just one of the 10 randomized runs, each 
with a random training/validation/test split (see Methods for randomized run 
definition and Supplementary Fig. 6 for recall/precision curve per randomized 
split). Bottom row: classification accuracy (y axis) across 10 randomized runs, 
summarized by boxplots, each defined by the following numbers: mean, s.d. 

σ (minimum, maximum). c, Aeolian cover macrohabitat CNN results. Top 
row: ‘true’ shows ground-truth data. Middle row: CNN predictions. Bottom 
row: classification accuracy (y axis) across 10 randomized runs, summarized 
by boxplots, each defined by the following numbers: mean, s.d. σ (minimum, 
maximum). d, Left: GAM contour map of probability of endolithic biosignatures 
in dome (see Methods and Supplementary Tables 3 and 4 for model details 
including parameter estimates and odds ratios). A, alabaster; B, type I crystal; 
C, type II crystal. Note biosignature-bearing ‘transition zones’ (tz) at boundary 
of type I and type II crystals or alabaster. Centre: GAM probability contour map 
of BSC biosignatures in aeolian cover. A, alabaster; S, sand; Z, alabaster + sand. 
Right: GAM contour probability map of endolithic biosignatures in aeolian cover 
(Supplementary Tables 3 and 4). Note that probabilities of biosignatures in 
sand in the upper half are zero, whereas sand (orange, yellow and pink colours) 
with alabaster (green colour) in transition zones is colonized. Colour ramp: red 
(probability 0) to green (probability 1).
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(two in microstructures at the surface and 1 cm below the surface and 
two in bare salar surface and at 1 cm); (3) two EC5 conductivity probes 
in microstructures at the surface and 1 cm below the surface. Sensors 
were placed in the field to acclimatize for two days before the field 
experiment and left in the field for two days after simulated rain. Rain 
events were simulated with a gentle spraying of deionized water equally 
across the quadrat via a commercial sprayer (10 mm = 10 l m−2 and 
1 mm = 1 l m−2) at 9:00 on 21 April 2019. The control received no water. 
Visual documentation using a hand-held camera was also acquired 
every 20 min during daylight for 48 h from the application of rain events 
to the end of the experiment.

Mineralogy, organic carbon content and nutrient content analyses. 
The mineralogical composition of powdered specimens sieved under 
a mesh size of 20 μm was verified with XRD using a Bruker D8 Advance 
diffractometer with a graphite–monochromatic Cu Kα radiation source 
(Cu cathode of wavelength Kα = 1.54051 Å) operated at 30 mA and 
40 kV. For quantitative analysis of the crystalline phases present in the 
samples, the powder diffraction file (PDF-4+ 2016) of the International 
Centre for Diffraction Data was used.

Field Raman spectra were recorded with a customized spectro-
meter developed to simulate operational concepts planned for the 
Raman Laser Spectrometer instrument on board the European Space 
Agency’s 2022 ExoMars rover mission. This field instrument performs 
measurements under conditions similar to those of the Raman Laser 
Spectrometer on the ExoMars rover, including at least 20 spectra in 
each sample, with a 50 μm spot size at a working distance of 5 mm and an 
irradiance level of 0.6–1.2 kW cm2 with a 532 nm continuous wave laser65. 
The spectrometer covers a spectral range from 100 to 3,800 cm−1 with 
a spectral resolution of 12 cm−1. The instrument was calibrated before 
each measurement using TECAPET, the same calibration standard 
as on board ExoMars. Data products were analysed using a statistical 
procedure previously applied in macro techniques, such as XRD and 
FT-Raman66. Because the spot size of the instrument is only 50 μm 
and only a single or a few grains are analysed at a time, the statistical 
analysis was performed on the relatively few (20–30) Raman spectra 
acquired per sample. A detailed point-by-point analysis procedure is 
provided in ref. 67.

Reflectance spectrometry is useful for rapid, non-destructive, 
compositional identification and analysis. Phyllosilicates, carbonates 
and sulfates display distinct absorption features in the SWIR region 
(1–2.5 μm) and organic molecules absorb light in the VNIR (0.4–1 μm) 
wavelength region68,69. We used an ASD FieldSpec 4 spectroradiom-
eter to collect solar-illuminated VSWIR reflectance spectra of freshly 
exposed samples in the field under cloud-free skies and clear lighting 
conditions, and in the laboratory using a contact probe. The instrument 
was calibrated to a dark current and a white reference target between 
each measurement. Reflectance spectra are derived through subtrac-
tion of the dark-current spectrum and division by the white-reference 
spectrum. Spectra were plotted and analysed using the Interactive Data 
Language Environment for Visualizing Images software suite. Reflec-
tance spectra acquired with the ASD in the field are provided in Fig. 4i 
for four locations on a sample (Fig. 4g). These illustrate the dominant 
gypsum features including bands at 0.99, 1.21, 1.45–1.49–1.54 (triplet), 
1.75, 1.94, 2.22–2.26 (doublet), 2.43 and 2.48 μm (ref. 53). Two spectra 
acquired in the field with the HySpex Mjolnir hyperspectral camera are 
shown in Fig. 4d. The type I and type II crystal gypsum spectrum (purple 
spectrum at the top of Fig. 4d) includes shoulder features for bassanite 
near 1.17, 1.43, 1.92 and 2.1 μm (ref. 53) that indicate that the type I and 
type II crystal gypsum unit is less hydrated and some of the gypsum 
crystals are converted to bassanite. Both the alabaster and type I and 
type II crystal gypsum spectra include a shoulder near 0.61 μm, a reflec-
tance maximum near 0.76 μm and a weak minimum near 0.88 μm that 
are consistent with ferrihydrite or fine-grained haematite70,71. These 
features are stronger in the alabaster-type spectrum, indicating that 

more iron oxide/oxyhydroxide is present in that sample, although the 
abundance is probably only a few per cent in either gypsum-rich unit.

Porosity was estimated using petrographic image analysis of thin 
sections prepared with vertical orientation. A blue dye was injected 
into the epoxy to visualize porosity in the thin sections. After acqui-
sition of the photomicrographs at 10× magnification using a Leica 
DM4500P LED polarizing microscope, the plane-polarized light 
photomicrographs (Extended Data Fig. 4a,c) were first normalized 
using the automatic white balance function in GIMP image processing 
software (GIMP 2.10.18; https://www.gimp.org/). In a second step a 
selection mask with an RGB threshold of 50 was applied to select blue 
areas (pores) in the individual images. The selection was exported to 
ImageJ (https://imagej.nih.gov/ij/). In ImageJ, binary images (Extended 
Data Fig. 4b,d) were created that subsequently were used to analyse 
the percentage area of pixels (black pixels in images Extended Data  
Fig. 4b,d) representing porosity.

Nutrient content was measured on powdered samples. Instrumen-
tation for total carbon, total organic carbon and total nitrogen was an 
Exeter Analytical CE-440 elemental analyser. Inorganic carbon was 
removed from samples before measurement of total organic carbon 
by acid extraction. This introduces the possibility that some organic 
compounds are lost during the extraction and rinsing process. Total 
phosphorus was extracted from powdered samples in a two-step pro-
cess: combustion at 500 °C followed by dissolution in 0.15 M HCl. The 
extracts were analysed with the Astoria Pacific A2 segmented flow ana-
lyser using the molybdate blue method. Accuracy and precision have 
a standard error range that is less than the minimum detectable limit.

Water-soluble anions and low-molecular-weight organic acids 
were analysed using ion chromatography. Two grams of ground sam-
ples were diluted in 10 ml of deionized water, sonicated (3 × 1 min 
cycles) and filtered through a 0.22 μm pore size. The filtrate was loaded 
into a Metrohm 861 Advanced compact ion chromatographer. Twelve 
anionic species were measured simultaneously: inorganic—fluoride, 
chloride, bromide, nitrate, nitrite, sulfate and phosphate, and five 
low-molecular-weight organic acids—acetate, propionate, formate, 
tartrate and oxalate. A Metrosep A Supp 7–250 column was used with 
3.6 mM sodium carbonate as eluent.

Microbial ecology methods. As in most analogue studies, our research 
began with initial observations to generate scientific hypotheses. In a 
second step we amassed statistical data at hierarchical scales to test 
these hypotheses (Figs. 2 and 3, Extended Data Figs. 1 and 2 and Supple-
mentary Fig. 1). We then quantified the probabilities for biosignatures 
and repeatedly tested and honed them, enabling the formation of 
new hypotheses, predictions and rules in an iterative cycle (Extended 
Data Fig. 2). The resultant robust set of quantitative biosignature, 
geomorphological and ecological data, rules and probabilities then 
formed the inputs to deep learning models to construct habitability 
and biosignature heatmaps and models (Figs. 4 and 5).

Overall approach to quantifying photosynthetic microbial commu-
nity abundance (probability of colonization) and mapping spatial 
distribution. Photosynthetic microbial community colonization at 
Pajonales was investigated from orbit-to-ground scales with a multi-
year, multidisciplinary approach that tightly integrated traditional 
molecular and ecological methods, UAV surveys and ground-based 
spectroscopic and panoramic camera instruments. We completed 
an initial field survey, three iterative microbial landscape ecology 
studies, microenvironmental monitoring and wetting experiments 
to quantify photosynthetic microbial colonization and identify the 
controls on microbial abundance and spatial pattern. The study col-
lected presence/absence data, an approach commonly employed in 
ecology to reduce time and sampling effort, with data collected from, 
for example, specific points, grid cells and quadrats. Specifically, we 
quantified the abundance of photosynthetic microbial communities  
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at multiple scales (that is, location to microscales) as the probability of  
a sample containing a biosignature, or percentage microbial commu-
nity colonization (%Col), which was defined as the number of samples 
(or macro- or microhabitats) containing biosignatures ÷ total number 
of samples (or macro- or microhabitats) × 100 (refs. 72–87).

Initial field campaign and assessment. The first-year field campaign 
(October 2016) was dedicated to a pilot survey of the biogeochemical, 
biological, ecological, mineralogical and geophysical features of the 
Pajonales location. Two UAV flight surveys (north location 0.237 km2; 
south location 0.198 km2) and three days of ‘walkabout’88 surveys were 
completed by the team. It was during these surveys that the visible pres-
ence of cryptic endolithic photosynthetic microbial communities in 
geomorphological structures was discovered and confirmed in situ by 
VNIR and Raman spectroscopic instruments, revealing beta-carotene 
and chlorophyll in the banded orange and green endolithic biosigna-
ture layered bands, respectively.

Initial data analysis and landscape study design. Walkabout survey 
and UAV image data from the field campaign served as the baseline to  
(i) define relevant scales of interest for the study (Extended Data  
Table 1), (ii) identify and classify geomorphic features of the Pajonales  
landscape (see UAV mapping above and Extended Data Fig. 1) and 
(iii) generate initial hypotheses and a detailed research design and 
sampling plan, which included three comprehensive microbial land-
scape ecology studies (2016–2019; Extended Data Fig. 2). All three 
studies included both UAV and ground-based components and tested 
hypotheses and generated results, rules and probabilities for biosig-
natures that served as inputs to the iterative hypothesis testing and 
refinements of the subsequent study (Extended Data Fig. 2). Because 
of the remoteness and high altitude of Salar de Pajonales, each field 
study was restricted to 1–2 weeks in duration on the basis of stringent 
logistical, financial and safety constraints. Three ecological studies 
were conducted in 2018–2019 to define and map microbial coloniza-
tion and allow probability functions to be quantified.

 1. ES-1 estimated microbial abundance and patterns and the effect 
of spatial scale using aerial to microscale nested biosignature 
surveys; ES-1 (i) tested initial hypotheses (Extended Data  
Fig. 2), (ii) collected first biosignature data and refined macro- 
and microhabitat classifications and (iii) produced the first 
rules and biosignature probabilities. These data were then 
tested for predictability in ES-2.

 2. ES-2 quantified microbial abundance and patterns and the 
influence of multiple sizes and types of habitat; the study tested 
and honed rules and probabilities from ES-1 and generated new 
rules and predictions for testing in ES-3 (Extended Data Fig. 2).

 3. ES-3 mapped abundance and biosignature spatial pattern at fine 
(centimetre) scales within individual domes, aeolian cover and 
ridges (Extended Data Fig. 2). The study continued testing the 
rules, predictions and probabilities from ES-2 and further re-
fined them. The resultant data were then the basis for generat-
ing habitability and biosignature probability heatmaps, spatial 
analyses (global Moran’s) and deep learning models (see deep 
learning sections below).

To investigate the effect of spatial scale (ES-1) on the probability 
of photosynthetic microbial community biosignatures (%Col) the 
study location was subdivided into nested hierarchical scales of study, 
including quadrants (red grid, 50 m × 50 m), areas (black grid, 5 m × 5 m) 
and microsites (Extended Data Figs. 1 and 2). All samples in ES-1 were 
randomly chosen on the basis of spatial scale (that is, not on the basis 
of habitat types). UAV imagery was initially classified as ‘raised’ areas 
(ridges and domes) or ‘flat’ areas (aeolian cover (grey) and patterned 
ground (green)). Initial study hypotheses were (i) that %Col varied sig-
nificantly by spatial scale (ES-1) and (ii) that raised geomorphic features 

(perhaps linked to preferential water availability or more suitable rock 
architecture for colonization)12,89–91 were more habitable than flat fea-
tures, that is, that geomorphic unit/ecological habitat type controlled 
colonization (ES-2). These habitat classifications were iteratively refined 
over the course of the project (ES-2 and ES-3) as an understanding of the 
features and associated microbial inhabitants evolved. Furthermore, 
the ‘abiotic’ patterned ground observed in 2016 using aerial imagery 
(green unit) was ascertained in 2018 ground surveys to be microstruc-
tures with living photosynthetic BSC communities. To accommodate 
these new findings, we created microstructure and bare salar surface 
microhabitat and BSC biological morphotype categories and separated 
these data from the endolithic colonization mode analyses.

Scales of study. Ecologically relevant scales of study (that is, scales 
of microbial communities and their interactions) can range from the 
planetary to the nanoscale. Spatial scales of choice for a study can also 
be circumscribed by the particular methods selected, instruments 
deployed and/or features of interest. The 2016 walkabout surveys and 
UAV imagery revealed surface geomorphologic units and features of 
varying scales with potential habitability. One initial hypothesis centred 
on these features as habitat units of ecological importance (for example, 
raised versus flat units) that could influence the abundance and spatial 
pattern of microbial communities across the landscape, as has been 
documented in earlier studies90,91. Extended Data Table 1 defines the 
nested hierarchical scales of physical features in the Pajonales location.

Metagenomic studies and multiplex immunoassay studies. The 
methods and results for the Pajonales project’s metagenomic and 
immunoassay investigations will be detailed in future companion 
papers. However, for completeness, here we provide a summary of 
those studies. Briefly, to identify the microbial composition of endo-
lithic photosynthetic communities, DNA was extracted from 2 g of 
each gypsum sample layer according to the FastDNA SPIN kit for soil 
method (MP Bio). We quantified the DNA and its integrity using a  
NanoDrop (NP1000) labelling the ratio of DNA/RNA 260/230 and the 
ratio of DNA/protein 260/280. In addition, microbial diversity investi-
gations through Illumina MiSeq sequencing of hypervariable regions 
of 16S rRNA for bacteria (V1–V3) were carried out using universal bac-
terial (27F/519R) primers 16S rRNA gene amplification with stand-
ard protocols92. Amplicon sequencing was performed using MR DNA  
(www.mrdnalab.com) according to the manufacturer’s guidelines. 
Multiplex fluorescent immunoassays were used for rapid estimation 
of the presence of microbial markers and main metabolic traits: 0.5 g of 
powdered samples were analysed with the SOLID-LDChip immunosen-
sor (Signs of Life Detector–Life Detector Chip)93–95, using a fluores-
cent sandwich microarray immunoassay as described elsewhere95–97. 
The LDChip is the core sensor of the SOLID instrument for detecting 
possible traces of life in the field of planetary exploration96,98. The 
LDChip used in this work contained 200 polyclonal antibodies pro-
duced against a wide range of immunogens (small organic molecules; 
peptides and proteins; exopolysaccharides and lipopolysaccharides; 
spores and whole cell lysates of bacteria and archaea, including 20 
antibodies to different cyanobacterial strains)94,96.

Genomic and multiplex immunoassay studies revealed phototro-
phic communities to be dominated by bacterial phyla that included 
Cyanobacteria, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes 
and Chloroflexota. Leptolyngbya, Gloeocapsa, Cyanothece, Chroococ-
cidiopsis and Calothrix, which are poikilohydric organisms that ‘equili-
brate rapidly to ambient water content’99 and are dependent upon the 
presence of liquid water for photosynthesis and growth, comprised some 
of the main cyanobacterial members. LDChip revealed the presence of 
a diversity of microbial markers immunodetected with antibodies to 
several cyanobacterial strains, Bacteroidetes as Salinibacter spp., halo-
archaea as Halorubrum sp., thermophiles as Pyrococcus spp. and some 
potential perchlorate-reducing bacteria such as Azospira spp., among 
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others. LDChip also showed positive immunodetection with antibodies 
to proteins involved in nitrogen fixation, and even the pink-coloured 
light-driven proton pump bacteriorhodopsin in one of the samples.

Detailed methods for microbial landscape ecology studies of 
photosynthetic microbial community biosignatures
ES-1 (spatial scale): quantifying abundance and nested scale spatial  
patterns. Extended Data Fig. 2 and Supplementary Fig. 1 show the 
spatial design and hierarchical sampling for ES-1. A random sampling 
scheme was adopted for each nested spatial scale72–87 to provide 
an objective representation of the probability of biosignatures, as 
%Col. The data were sampled at resolutions from hundreds of metres  
to centimetres. To be considered representative, ≥10% of the  
Pajonales study location was mapped. Two randomly selected  
quadrants (50 m × 50 m) were chosen. A third quadrant was added 
for the habitat surveys for ES-2. Within each quadrant, we randomly 
selected four ‘areas’ (5 m × 5 m), nine sites (1 m × 1 m) within each area 
and three microsites (10 cm × 10 cm) within each site (n = 216 samples).

Within each microsite, the following data were recorded: (i) pres-
ence/absence of visible photosynthetic communities/biosignatures; 
(ii) aspect/orientation of visible biosignatures (four cardinal direc-
tions) and depth (to centimetres) and colour of colonized layers;  
(iii) microhabitat type(s); (iv) samples for mineralogy and nutrient 
content; (v) samples for gravimetric water content; (vi) samples for 
molecular biodiversity and biomarker profiling by multiplex immuno-
assays. %Col of photosynthetic microbial communities was assessed 
in each microsite by the visible presence/absence of orange and/or 
green pigmentation, that is, standard ocular estimate methods uti-
lized in multiple previous studies23,32,85,86,100–107. Ocular estimates of the 
presence/absence of photosynthetic communities within the green 
and orange visible endolithic layers and BSC32 were also further cor-
roborated (i) in situ with VSWIR and Raman instruments and (ii) in the 
Centro de Biotecnología’s laboratory (for example, Supplementary 
Fig. 2) with images and emission spectra with a confocal laser scanning 
microscopy wavelength λ-scan function108 and with a scanning electron 
microscope according to the standards of the Centro de Biotecnología 
of the Universidad Católica del Norte and the Geology Department of 
the University of Montana.

ES-2 (habitats): quantifying photosynthetic microbial community 
abundance and habitats. ES-2 was designed to investigate the effect of 
spatial variation of specific habitats on colonization. Classification of 
initial macro- and microhabitat data from ES-1 was refined and a larger 
analytical scale of observation, the ‘large-scale polygon/polygonal 
network’, was added with further UAV imagery analysis. It revealed that 
ridges and aeolian surface cover units comprised the exterior edges and 
interior surfaces, respectively, of polygons at larger scales (1 to >30 m in 
diameter; Extended Data Fig. 1). Previous studies have shown these dis-
tinct types of network unit (of all sizes) to influence biotic parameters 
or habitat geochemistry90,91,109. In this regard, we quantified abundance 
in seven large polygons in ES-2 (5–35 m in diameter) and seven domes 
(1–5 m diameter) (Extended Data Fig. 2). For the large polygons, seven 
exteriors, that is, ridges in ES-1, and seven polygon interiors, that is, 
aeolian cover in ES-1, were mapped (n = 147 total samples). In each  
habitat type, seven samples were randomly chosen and the following 
data collected: (i) presence/absence of visible photosynthetic com-
munity biosignatures; (ii) aspect/orientation of biosignatures (four 
cardinal directions) and depth of colonized layers, if present; (iii) 
microhabitat type(s); (iv) samples for mineralogy and nutrient content; 
(v) samples for gravimetric water content; (vi) samples for molecular 
biodiversity and biomarker profiling by multiplex immunoassays.

ES-3 (fine scale): dome, ridge and aeolian cover fine-scale studies. 
In this third iteration, data and the rules and probabilities for biosig-
natures from ES-1 and ES-2 were further analysed, refined and tested 

as inputs and predictions in ES-3 (Extended Data Fig. 2). Microhabitat 
surface areas and photosynthetic biotic colonization were also mapped 
and quantified at much higher spatial resolution and detail to con-
struct heatmaps for fine-scale (centimetre-to-millimetre) habitats and 
biosignatures. Microhabitats were also further precharacterized (and 
predictions generated) using ground-based VSWIR hyperspectral scans 
(see methods above) and assessments of panoramic visual imagery. 
Subsequently, for each macrohabitat unit 1 m2 quadrats (5 cm grid, 
n = 400 samples per quadrat, Extended Data Fig. 2) were used to map, 
quantify and confirm fine-scale biosignature patterns. Macroscale 
habitat orientation was held constant by selecting unit areas adjacent to 
each other in the same orientation, thus controlling for macroscale cli-
mate variations including light, temperature and wind speed/direction. 
Visual and VSWIR hyperspectral panoramic and ground-based (that is, 
hand-held camera) visual images of the ridge, dome and aeolian cover 
macrohabitats were also acquired to overlay onto biosignature data 
and assess microhabitat visual and spectral fidelity. Following colo-
cated scans, in each 5 cm2 sample, the following data were recorded: 
(i) presence/absence of photosynthetic community biosignatures;  
(ii) type of colonization (endolithic and/or BSC); (iii) aspect/orienta-
tion of biosignatures (four cardinal directions) and depth of colonized 
layers, if present; (iv) microhabitat characteristics (for example, type, 
features, spatial location, presence of a transition, powdery consistency 
in crystals, proximity to vertical crack). Mineralogy and molecular 
biology samples were also collected. Data from ES-3 formed inputs for 
spatial statistical analyses and deep learning models.

Statistical ecology and deep learning methods
Microbial landscape studies (ES-1–2): spatial and habitat effects 
on colonization. Chi-square tests for independence were conducted 
to assess differences in the ratio of colonization among the macro- and 
microhabitats, and at each spatial scale (Extended Data Table 2).

Spatial randomness/aggregation analyses (ES-1–3; Ripley’s K, 
global Moran’s I). Spatial statistics are a broad suite of statistical 
methods enabling the identification and comparative analysis of spa-
tial patterns utilizing data that have a spatial characteristic82,110. One 
such tool is Ripley’s K function, which is used to identify randomness 
and clustering of points within a spatial group82,110,111. Ripley’s K and 
global Moran’s I were used to assess spatial pattern at UAV and fine 
scales for endolithic and BSC communities at Pajonales. Ripley’s K 
analyses were conducted with the R package spatstat112,113 using grid 
coordinates and presence/absence data for ES-1–3. Permutation tests 
(999 random permutations) for the global Moran’s I statistic of the 
same data were conducted with the R package (https://link.springer.
com/article/10.1007/s11749-018-0599-x). Spatial relationships were 
defined by inverse distance weighting (1/distance). For results see 
Supplementary Fig. 3.

Deep learning methods. At the fine scale, the predictability of (endo-
lithic/BSC) biosignatures, and the association with particular micro-
habitats (proxies for water availability), were analysed with pivot tables 
(for rules) and tested for predictive power with CNNs (Fig. 5a–c) and 
spatial GAMs (Fig. 5d).

GAM methods
Predictive model for endolithic colonization of dome macrohabi-
tat. A spatial logistic GAM was conducted using the mgcv package in R 
(version 4.0.4) with a restricted maximum likelihood for the parameter 
estimation:

log (P/(1 − P)) = β0 + β1 T2 + β2 T1 + f (x_coord, y_coord) , (1)

where P is the probability that the response variable (endolith, binary, 
0–1) occurs in a cell114–116 and the term P/(1 − P) is referred to as the odds 
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ratio or the likelihood of observing endolithic biosignatures given 
the presence of the microhabitat T1 or T2. A smoothness function 
f(x_coord, y_coord) was included to account for the spatial coordinates 
x_coord and y_coord. Observations that are closer in distance will have 
a stronger correlation than observations that are further apart. The 
smoothness function was a bivariate P-spline.

Alabaster was not included in the model given that it was linearly 
dependent with endolith (correlation was close to 1) and inclusion 
in the model would have impacted the outcomes of other variables 
in the model. This was also observed for sand and float, which were 
both negatively correlated to endolith (close to −1) and thus were not 
included in the model.

The microhabitats considered in the model as binary outcomes 
(1, microhabitat exists; 0, does not exist) included type I crystal micro-
habitat (T1) and type II crystal microhabitat (T2). The model can be 
written as

(P/(1 − P)) = exp (β0 + β1 T2 + β2 T1 + f (x_coord, y_coord)) . (2)

Estimation and inference results related to the spatial logistic GAM 
in equation (1) are given in Supplementary Table 3. With this model, 
a probability contour map for endolithic life in the dome face macro-
habitat was created (Fig. 5d, left panel).

Predictive models for endolithic and BSC biosignatures in aeolian 
cover macrohabitat. Spatial logistic GAMs were also conducted, with 
a restricted maximum likelihood for the parameter estimation, to sepa-
rately estimate the probability of endolithic and BSC biosignatures in the 
aeolian cover macrohabitat. Both models were formulated as follows:

log (P/(1 − P)) = β0 + β1 sand + f (x_coord, y_coord) , (3)

where P is the probability that the response variable (endolith/BSC, 
both binary, 0–1) occurs in a cell and P/(1 − P) is the likelihood of observ-
ing endolith or BSC biosignatures given the presence of sand. The 
smoothness function described earlier is also included in equation (3).  
Similar to the dome model above, alabaster was not included in  
the model given its linear dependence with endolithic colonization 
(correlation was close to 1) and that inclusion in the model would have 
impacted the performance of other variables in the model.

Pivot-table and decision-tree methods. Pivot tables count the num-
ber of events, where for Pajonales each event is some combination 
of microhabitat (for example, alabaster, sand) and biosignature, as 
%Col (endolith, BSC). We derive a decision tree from the pivot table, 
in which the order of yes/no questions centred on a microhabitat is 
chosen to maximize the likelihood of detecting a biosignature in the 
fewest questions possible. Pivot tables and decision-tree results are 
shown in Extended Data Fig. 3, Supplementary Tables 1 and 2 and Fig. 4.

CNN methods. A CNN is a machine learning model that specializes in 
the isolation and extraction of salient features from spatial data in a 
data-driven manner117. That is, a feature is deemed salient if it is predic-
tive of the target ground truth. To create the model, optical data were 
taken in situ with an iPhone 7 of the dome and aeolian cover macro-
habitats and later split into 32 pixel by 32 pixel subsets and annotated 
for the following variables: microhabitat type and presence/absence 
of endolithic or BSC biosignatures. To quantify the effect of the split 
of the macrohabitat into mutually exclusive training, validation and 
test image chips, we train and evaluate the CNN model across 10 rand-
omized splits (for examples, see Supplementary Fig. 7), and generated 
recall–precision curves per randomized split (see recall–precision 
curves in Supplementary Fig. 6).

Annotated images (four per cell in the 10 × 10 cell grid) from each 
macrohabitat were split randomly into subsets of 70% training, 15% 

validation and 15% testing, following standard best practices to avoid 
overfitting and prevent leakage of information between training and 
validation/testing datasets118. After removing images with holes/no 
samples, 349 images remain in the dome macrohabitat and 378 images 
remain in the aeolian cover macrohabitat (Supplementary Fig. 8). Pre-
dictions on the training set were used to fit the CNN model parameters. 
Predictions on the validation set were not used to fit the model, but 
they were used to assess whether the model overfits the training data: 
if the training accuracy (defined as [true positives + true negatives]/
[size of dataset]) and validation accuracy numbers are similar, then 
no overfitting occurred. If overfitting occurs, it means that the model 
can predict only the ground truth of the training data by memorization, 
rather than distinguishing actual salient patterns in the imagery that are 
generally predictive across the entire macrohabitat. On the other hand, 
it is possible to rely too much on the validation accuracy, such that it 
is now the model design (for example, depth of the neural net) that is 
at risk of overfitting, but in this case on the validation set. Therefore, a 
third subset, the testing set, was used at the end of each randomized run 
to measure the final test accuracy of the model. In effect, an accuracy 
in the test set that is comparable to that of the validation set implies 
that the model design process was not contaminated by our assess-
ments on the validation set. Therefore, we can conclude that the model 
generalizes across the entire macrohabitat. See Fig. 5 for results, and 
Supplementary Fig. 7 for examples of randomized image splits.

For pixel-wise classification of the study site and its surroundings a 
fully connected CNN, or fully convolutional network, was employed119. 
The orthophotomosaics were split into 708 individual subframes 
approximately 18.5 m × 18.5 m in extent for input into the fully convo-
lutional network. We used standard data augmentation techniques 
of rotation, reflection and illumination adjustments to increase the 
total data volume 18-fold for a total of 12,744 images with ground-truth 
labels. The images were split into training (75%), validation (12.5%) and 
testing (12.5%) datasets and statistics were drawn on the distribution 
of classes within each dataset to ensure consistency in the representa-
tion of each class across the datasets (Supplementary Fig. 5). We chose 
to split the orthophotomosaic scenes into the following 7 classes: 
AeolianCover, MottledGround, PatternedGround, PolygonRidge, 
Dome, Objects and Road. Ground-truth labels were created in a geo-
graphic information system program using the highest-resolution 
orthophotomosaic by a remote sensing geologist with on-the-ground 
knowledge of the field site. A version of the ResNet50 CNN46 trained 
on over 1 million images from the ImageNet database was used as the 
network backbone for our fully convolutional network. Training was 
carried out on clusters on the Infrastructure for Scientific Applica-
tions and Advanced Computing facility at the University of Tennes-
see, Knoxville, with the Adaptive Moment Estimation (Adam) solver 
until the loss rate stabilized (typically <40 epochs). We calculated the 
standard evaluation parameters boundary F1 contour matching score 
(BF-score), precision and recall, as well as network uncertainty, which 
was used to formulate a ‘confidence score’. Network uncertainty was 
calculated using the Monte Carlo dropout method120. A confidence 
score was formulated as follows:

Confidence score (%) = (TPi TCi + FPi (100 − FCi)) /Ni

where TPi and FPi are true and false positives, respectively, for class i. TCi 
and FCi are the network certainty (0–100%) averaged over all true and 
false predictions, respectively, for class i, and Ni is the total number of 
pixels predicted as class i. Evaluation metrics are presented in Extended 
Data Table 4. While typical evaluation metrics for semantic segmenta-
tion, such as the BF-score, measure how accurately a network draws a 
segmentation boundary around features, the confidence score reports 
the degree to which a user should trust the network certainty analysis 
for a given class. The confidence score metric, therefore, enables a 
more nuanced analysis of network results and feature identification 
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than typical evaluation metrics. Confidence scores can be high even if 
the boundaries drawn around objects are inaccurate (that is, BF-scores 
are low), and conversely confidence scores can be low even if BF-scores 
are high. If the confidence score is high relative to the BF-score it means 
that the uncertainty analysis is reporting useful information upon 
which users should rely (that is, the network is not confident about false 
predictions and is confident about true predictions), but if the opposite 
is true users should be wary of the network certainty analysis because 
the network is probably overly certain of false predictions. Therefore, 
we report confidence scores values in the main text, but for relevant 
classes we report BF-score, precision and recall alongside confidence 
scores for reference (Extended Data Table 4).

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request. Sequence data from 
this study have been deposited to the DDBJ database under BioProject 
PRJDB14848 with accession numbers DRR425262 to DRR425263.

Code availability
Code and data to reproduce the results of the CNN models can be found 
at https://github.com/SETI/endo.
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Extended Data Fig. 1 | Geomorphic units and habitats at Dome Field study 
location from orbital (left) to cm (right) views. a, Large-scale polygonal 
network pattern (pink boxes). a1, Orbital view reveals large-sized polygons 
(mean diameters in study location = 10 m). a2, Large-scale polygon exteriors 
are composed of ridges and polygon interiors are composed of aeolian cover; 
a3, Ground view of ridge (mean height in study location = 33.5 ± 8.6 cm). Note 
the flat ridge tops covered in eroded float due to wind erosion and scouring by 
sand. The sides of ridges are typically composed of crystals and the bottoms by 
alabaster. a4, Arrangement of crystals along one ridge. View of Type II crystals 
with visible biosignature bands, as seen in a5 (~0.55 cm below ‘eggshell seal’23 
surface duricrust); a5, In the close-up view of crystals, microbal laminae become 
visible. Pink-orange layer: desiccation and radiation-resistance bacteria such 
as Salinibacter spp., Halorubrum sp., Pyrococcus sp., Chloroflexota, Thermi 
(carotenoids, pink arrow); Green colonized layer: Cyanobacteria (chlorophyll 
pigments, green arrow); b, domes (red boxes). b1, Distribution of domes (red 
arrows) in orbital view; b2, Dome heights range from ~10 cm to ~3 m, diameters 

range from ~1 to 7.5 m. b3, Ground view of domes, with eroded crystals in 
left foreground and intact tightly embedded crystals of the dome structure; 
alabaster lines the bottom of the dome; b4, Type I jagged sharp crystals tightly 
embedded in dome; b5, Type II crystal topped with alabaster in a dome. Note 
brown thin (~0.5 cm) surface duricrust and white powdery alabster efflorescence 
material with green and pink biosignature layers. c, Patterned ground (green 
boxes); Orbital view of patterned ground geomorphic/macro-habitat unit;  
c1. Bare salar surface is visible as speckled tan features. c2-c3, Fractal nature of 
micro-structure network inhabited by biological soil crust (BSC) communities is 
apparent from aerial and ground views. Micro-structure network with BSC is the 
patterned darker material (1–3 cm height) covering the lighter-toned bare salar 
surface micro-habitat. c4, Micro-structure with pinnacles covering the bare open 
salar surface, which is visible in the bottom right of photo; c5, A flipped micro-
structure reveals BSC photosynthetic communities with orange/pink and green 
biosignatures.
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Extended Data Fig. 2 | Microbial Landscape Ecology Methods: Nested Spatial Scale and Habitat Sampling Designs. a) ES-1 nested scale sampling design. b) ES-2 
habitat study surveys and sampling design. c) ES-3 fine-scale microhabitat and biosignature mapping sampling design.
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Extended Data Fig. 3 | Rules for the probability a sample contains 
endolithic biosignatures in microhabitats of a dome macrohabitat. Visual 
representation of the main results of Supplementary Table 1. For example, in 
the first decision choice, if the microhabitat is alabaster, then the probability of 

endolithic biosignatures is 100% (%Col is: 27 colonized samples/27 total alabaster 
samples ×100). In the figure, if the microhabitat is not alabaster, this leads to the 
next decision choice of whether the microhabitat is a Type II (T2) crystal or not, 
and so forth.
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Extended Data Fig. 4 | Thin section photomicrographs (a,c) and binary 
images of pore networks (b,d) of Alabaster (a,b) and a porous selenite crystal 
(c,d), respectively. a, b, Alabaster contains a well connected intercrystalline 
pore network (f = ~9.4%) without preferred orientation. c, d, the selenite crystal 

has a higher total porosity (f = ~11.9%) and larger pores, but pores are parallel 
to each other (elongated slot pores) and are less well connected in a horizontal 
direction (growth direction of crystal is up in photomicrograph) Each image is 
900 ×900 mm (1750 px 1750 px).
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Extended Data Table 1 | Relevant ecological survey (black, this study) spatial (red, this study) and comparable rover 
sampling scales
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Extended Data Table 2 | Detailed statistical ecology analyses and results

1) Biosignature probabilities are presented herein as %Col, as this is the ratio tested for significance in the χ 2 test. 2) χ 2 test of independence of ratios of colonization; 3) %Col of the patterned 
ground unit is 50% and percent area cover for microstructures of the unit was 40.3%. Patterned ground was excluded here from chi-square tests to include only endolithic morphotypes. 4) In 
Study ES-1, %Col by BSC was 0% for the bare salar surface microhabitat and 100% for the microstructures; these microhabitats were excluded from chi-square tests to include only endolithic 
morphotypes; 5) In Study ES-1, float (2.4 ± 1.5 %Col) was analyzed separately from sand (12.5 ± 7.2 %Col), as well in a combined (when both are present) category (4.7 ± 3.3 %Col), as in Study ES-2.
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Extended Data Table 3 | Microclimate Data at Salar de Pajonales, liquid water availability in alabaster (519 sensor) and Type I 
crystals (517 sensor, east; 520 sensor, north) in dry and hydrated states; C: colonized; UC: uncolonized; T: temperature (oC); 
%RH: Percent Relative Humidity

Mean annual and mean daily data are from 11/3/18-10/20/19; Pre-rain T and %RH are calculated from 11/1/18-01/27/19 to reflect the summer hot, dry months prior to rain onset and are indicative 
of microhabitat ‘dry state’; total # hrs RH ≥ 95% indicates the number of hours of liquid water present in the microhabitat for the entire year and for the 17-mm rain (1/28/19-2/20/19) event, 
respectively. Note that Type I crystal microhabitats at different orientations and light regimes (east, 517 sensor and north, 520 sensor) on the same dome had similar liquid water availability. 
*ns: no significance. Relative humidity and temperature records were summarized to identify the high and low temperatures and relative humidity of each day in RStudio (3.6.3 version) 
and analysed with respect to three metrics: (1) mean annual, (2) mean daily minimum and (3) mean daily maximum. To test whether the mean annual, daily maximum and daily minimum 
temperature and relative humidity differ for each sensor, a two-way ANOVA was performed by considering microhabitats (519, 517 and 520 sensors) and time (day) as fixed factors (relative 
humidity data was previously log-transformed to achieve normality assumption). Pre-rain T and %RH “dry state” data were analysed as previously indicated. Tukey multiple comparison tests 
were carried out to determine significant differences between microhabitats.

http://www.nature.com/natureastronomy


Nature Astronomy

Article https://doi.org/10.1038/s41550-022-01882-x

Extended Data Table 4 | Comparison of evaluation metrics of neural network semantic segmentation results on orthophoto 
mosaics at 6.9 cm/pixel and 23.9 cm/pixel ground sampling distances (GSD)
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